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Rotational Relativity Theory 

M .  C a r m e l i  ~ 

Received August 21, 1985 

The constancy of the spin of the photon was recently shown to lead to a new 
Lorentz-type transformation that relates the energy, rotational velocity, moment 
of inertia, and angular momentum, where rotational invariance was the basis of 
the theory instead of the ordinary linear invariance of special relativity. In this 
paper the new group of transformations is shown to lead naturally to a special 
theory of relativity whose basic metric has an R'x S s topology rather than the 
familiar Minkowskian metric. Predictions by the theory are shown to be highly 
supported by experiment. 

In 1905 Einstein published his famous special theory of relativity, 
revising incorrect physical concepts and fixing our notion of space and time 
(Einstein, 1905). The theory is based on the two postulates: (1) The speed 
of light is independent of the source's motion, and (2) the laws of physics 
are the same in all inertial systems. A deeper understanding of the theory 
was subsequently given by Minkowski, who showed, among other things, 
that the Lorentz transformation is nothing but a "rotation" in the four 
dimensions of space and time (Minkowski, 1909). 

However, Einstein was not satisfied with some important aspects of 
his theory, the most noticeable of which is the inability of special relativity 
to answer Mach's question why inertial systems are physically distinguished 
from other systems (Einstein, 1979). And Einstein conceded that he has no 
answer to this question (Einstein, 1979). 

Light, on the other hand, has another important property (in addition 
to its constant speed), namely, it has a constant intrinsic angular momentum 
(spin). In a recent paper (Carmeli, 1984) it was shown that the constancy 
of the spin of the photon leads to a new Lorentz-type transformation that 
deals with rotational motion and invariance, just as the constancy of the 
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speed of  light leads to the ordinary Lorentz transformation dealing with 
linear motion and invariance in the special theory of  relativity. The concept 
of  the spin, discovered 20 years after the advent of special relativity 
(Uhlenbeck and Goudsmit,  1925, 1926), goes along with the theory but is 
not included in its two postulates. Invariance under rotations with constant 
angular velocities follows to be intimately related to the constancy of  the 
spin of the photon (Carmeli, 1984). One then deals with bodies (coordinate 
systems) having constant angular velocities relative to each other and hence 
Newton's law of  inertia for a rigid body (Euler's equations) is valid. In this 
paper the theory is completed into a theory of  relativity that deals with 
rotational motion, thus showing that inertial systems are not preferred from 
others as both Mach and Einstein expected. 

The proposed theory is, in fact, a special theory of relativity defined 
on a metric having R x S 3 topology instead of  the familiar Minkowskian 
metric of  ordinary special relativity. Here R is the open timelike real line 
(describing time) and S 3 is the three-sphere (describing rotations), expressed 
by the group S U 2  which is parametrized by the Euler angles, and the whole 
space-time is simply connected. The group of  transformations obtained 
(given explicitly in the sequel) is a Lie group and leaves the line element 

d r  2 = d t  2 - 7-2[(dO1)2+ (dO2)a + (dO3) 2] (1) 

invariant under  all linear and homogeneous coordinate transformations. 
Here 3/is a constant and d|  k, k = 1, 2, 3, are the 1-forms 

dO 1 =s in  0 sin ~&b +cos  ~ d O  

dO 2 = sin 0 cos ~ &b - sin ~b dO (2) 

dO 3 = cos 0 dq5 + d~ 

where ~b, 0, $ are the Euler angles, dO k are analogous to the Cartesian 
differentials d x  k in special relativity. The group of  transformations obtained 
is for rotations with constant angular velocities while the Lorentz group is 
for translations with constant linear velocities. In both cases they describe 
"rotat ions" in four dimensions, as Minkowski discovered, with fixed 
"angles." The comparable line element to (1) in special relativity is the 
familiar Minkowskian line element 

d r  2 = d t  2 - c -2 [  ( d x l ) 2  + (dx2)2 + (dx3) 2] (3) 

The constant 3' appearing in equation (1) is not a universal constant but is 
characteristic to every particle in nature and is the maximum angular velocity 
the particle can have (exact definition will be given in the sequel). Also, 
the infinitesimal quantities d |  k are not differentials of  some angles O k but 
are, mathematically speaking, i m p e r f e c t  d i f f e r e n t i a l s .  
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We are now in a position to put forward our postulates for the theory: 
(1) The laws of physics are the same in all rotationally unaccelerated 

systems (bodies) having constant angular velocities relative to each other. 
(2) The line element (1) is invariant. 
Before we give explicitly the transformation leaving the line element 

(1) invariant we wish to give another way of looking at the theory, now 
from the point of  view of the general relativity theory. I f  one starts from 
the general-relativistic line element ds  2 =  g ~ d x ~ d x  ~ (invariant under the 
infinite coordinate transformations) and lets gravitation have no dynamical 
role, then one obtains the Minkowskian line element (3), and the group of 
transformations leaving this line element invariant is the ordinary Lorentz 
group. In our case if one starts from the general-relativistic homogeneous 
space metric decribing a finite body d s  2 = g ~ d O ~ ' d @  ~ (also invariant under 
the infinite coordinate transformations with dO ~  d t ) ,  and lets gravitation 
again have no dynamical role, one then obtains the rigid-body line element 
(1) which is the most comparable to the continuum-physics Minkowskian 
line element (3), and the group of transformations leaving invariant this 
line element (1) now is not the Lorentz group anymore but the group given 
in this paper. 

To derive the new Lorentz-type transformation one best confines him- 
self to the two-dimensional "rotat ion" with a fixed "angle"  in space and 
time. One easily sees that when ~b = const and 0 = const, then the line 
element (1) reduces to 

d r  2 = d t  2 - y -2 dqJ 2 = inv. (4) 

corresponding to the line element 

d r  2 = d t :  - e -2 d x  2 = inv. (5) 

of  special relativity, where x is one of the Cartesian coordinates. Then for 
a fixed "rotat ion,"  equation (4) yields the transformation 

d t  - f l d q ,  / 3, 2 d ~  - f~ d t  

a t ' -  (1 -c~21v2) 1/2'  c l q / -  (1 - fl2/y2) 1/2 (6) 

where f~, with 0-< f~ < y, is the ordinary (three-dimensional) angular velocity 
( =  d q ~ / d t ) ,  in analogy to the Lorentz transformation obtained from equation 
(5) 

d t  - v d x  / c 2 d x  - v d t  
d t ' -  (1 - v2/c2) 1/2' d x t -  (1 - v2 / c2 )  '/2 (7) 

where v, with 0-< v < c, is the ordinary (three-dimensional) linear velocity 
( = d x / d t ) .  Multiplying now the line element (4) by I ~ T 4 / d 7  "2 and making 
simple identifications, one then obtains the energy formula 

E 2  y2j2 ___ i23,4 _- E 2, J =Iow = 1,0., (8) 
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where J is the angular momentum, I is the moment of inertia (the subscript 
0 refers to the "rest" frame), E is the energy, and to is the relativistic angular 
velocity. Equation (8) is analogous to that of special relativity, 

E 2 - c 2 p  2 = m2o c4 = E2o, p = mou = my  (9) 

where p, m, E, and u are the linear momentum, mass, energy, and the 
relativistic velocity, and the subscript 0 again refers to the "rest" frame. 
(Comparison of the dynamical variables in linear and rotational motion is 
given in Table I.) It will be noted that E = /3 ,  2 just as E = mc 2 in special 
relativity. 

The energy formula (8) can also be written in the form 

E 2 _ 12to2 = 123/4 = E ~ ,  l = lo3'  ( 1 0 )  

just as one can rewrite equation (9) in the form 

E 2 -  k2u 2 =  m~c 4 =  E~, k = moc (11) 

where to = d ~ / d r  and u = d x / d r .  Notice that equations (9) and (10) are 
valid for any particle, including the photon (/ph = h),  whereas equations 
(8) and (11) are good for finite-mass particles only. From equation (8) one 
obtains 

E - ~ J  J - f l E / y  2 
E ' -  J ' -  (12) (1 - ~2/y2)t/2,  (1 - f~2/y2)1/2 

just as for the energy and linear momentum in special relativity, 
E - vp p - rE~  C 2 

E' - p' = (1 - v2/c2) 1/2" (1 - -  V2/C2) 1/2 (13) 

TO the first order in f U Y ,  equations (12) yield E ' ~ - E - ~ J ,  which is the 
familiar Routh transformation (Bengtsson and Frauendorf, 1979). 

Table I 

D y n a m i c a l  va r i ab l e  (description) 
Ordinary special relativity Rotational special relativity 

p = m o U  = m y  (linear momentum) 
mo (rest mass) 
m = t o o ~ ( 1  - • 2 / c 2 ) 1 / 2  (variable mass) 
u = v~  (1  - v 2 / c  2) 1/2 (relativistic velocity) 
p = q / ( l  - v 2 / c 2 )  1/2  (linear momentum) 
q = m o V  (nonrelativistic linear momentum) 
k = m o C  (characteristic linear momentum) 
v /  c = q /  k (relativistic factor) 
v = dx/dt (ordinary velocity) 
u = dx/d~- (relativistic velocity) 
E = m c  2 (energy of a particle) 
Vph = C (velocity of photon) 
Eph = c p  (energy of photon) 

J = Io to  = I I ~  (angular momentum) 
I 0 (rest moment of inertia) 
1 = Io/(1 -~22/y2)i/2 (variable moment of  inertia) 
to = ~ / (1  - ~2/y2)  1/2 (relativistic angular velocity) 
J = j / ( 1 - l ~ 2 / y 2 )  1/2 (angular momentum) 
j = lof~ (nonrelativistic angular momentum) 
l = loy (characteristic angular momentum) 
f ~ / y  = j / l  (angular relativistic factor) 
f l  = dO~dr (ordinary angular velocity) 
to = d O ~ d r  (relativistic angular velocity) 
E =/3 ,  2 (energy of a particle) 
lph = h (angular momentum of photon) 
Eph = hto (energy of photon) 
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Predictions by the theory can now be made and compared to experi- 
ment. From equation (8) one gets 

E = E0/(1 - f f /3 '2)  1/2 (14) 

which, to the fourth power in f t /y ,  gives 

E 0 = E 1 r r,,2 3 r  ,,~4t 2 -~loSL - ~ l o S t / Y  (15) 

analogously to the special-relativistic formula 

Eo = E ~ 2 3 4 2 - smov  -~mov /c  (16) 

Eo with the reference Routhian (Bengtsson and One can compare 
Frauendorf, 1979), 

Q = lh2/~r l i on2  - - ~ 1  D4 (17) 

One sees that the two formulas have identical structure and thus we can 
relate the Harris parameters Jo  and J l  to the rest moment of inertia Io and 
the maximum rotational frequency y. One obtains I o = J o  and 3, = 
(3Jo /2N0 ~/2. The difference between equations (15) and (17) is only in the 
D-independent first terms on the right-hand sides, where in equation (15) 
it is the total energy, whereas in equation (17) it is taken as the nonrelativistic 
energy j2/2~o with J = hi2. In Table II we list the predicted maximum 

Table II 

Nucleus 

Predicted critical Maximum frequency Rotationally 
rotational frequency measured b relativistic 

3'( 1020 rot/sec) ~ II(1020 rot/sec) c factor 12/y 

lSTEr 1.21 0.92 0.76 
lSSEr 1.40 1,16 0.83 
159Er 1.50 0,92 0.61 
16tEr 1.26 0,92 0.73 
163Er 1.54 0,92 0.60 
164Er 1.76 0,97 0.55 
16SEr 1.66 0,92 0.55 
lsgYb 1.08 0.97 0.90 
161yb 1.36 0.97 0.71 
163yb 1.50 0.87 0.58 
16syb 1.68 0.97 0.58 
167yb 1.43 0.70 0.49 
169yb 1.68 0.92 0.55 
16STm 1.54 0.82 0.53 

aThe predicted critical rotational frequency y is given by y = (3~o/2~1) t/2. 
bBengtsson and Frauendorf  (1979). 

CThe Harris parameters Jr and ~ t ,  as well as the max imum measured rotational frequency 
ft ,  are taken from figures 2, 3, 5, 7, 9, and 12 of Bengtsson and Frauendorf  (1979). 
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rotational frequencies y for the nuclei whose parameters J o  and J l  are 
given in Bengtsson and Frauendorf  (1979) and the maximum measured 
rotational velocities f~ for each nucleus. One sees that the ratio f l / y  can 
be as high as0 .9  (for 159yb) but does not exceed the limit 1. 

We are now in a position to give an exact definition to the constant y, 
which can easily be done as in determining the speed of light c in special 
relativity. From equations (8) and (9) one gets y 2= ( E / J ) ( O E / O J )  and 
c 2 = ( E / p ) ( O E / a p )  or y = [aE/aJ] j~oo and c = [aE/ap]p_,~.  

In conclusion, and because of the group property of  the transformations 
obtained, it appears  that angular velocities cannot be added indefinitely 
but have a law of addition of  the form 

f11+122 
-- 1 q_ ~.~ 1~9.2/,y 2 (18)  

This prediction, along with that of  the energy formula E = 13, 2, should be 
a challenge to experimentalists to prove or disprove. The R x S 3 wave 
equations, invariant under  the transformation presented in this paper,  were 
given elsewhere (Carmeli, 1985; Carmeli and Malin, 1985a,b). 

A C K N O W L E D G M E N T  

I am grateful to Professors J. Bar-Touv and N. Rosen for useful conversations and 
comments. This research was partially supported by the Center for Theoretical Physics, 
University of Maryland. 

REFERENCES 

Bengtsson, R. and Frauendorf, S. (1979). Nuclear Physics, A327, 139. 
Carmeli, M. (1984). Nuovo Cimento Lettere, 41, 551. 
Carmeli, M. (1985). Foundations of Physics, 15, 175. 
Carmeli, M. and Malin, S. (1985a). Foundations of Physics, 15, 185. 
Carmeli, M. and Malin, S. (1985b). Foundations of Physics, 15, 1019. 
Einstein, A. (1905). Annalen der Physik, 17, 891. 
Einstein, A. (1979). Autobiographical Notes, A Centennial Edition, Translated and Edited by 

P. A. Schilpp. Open Court Publishing Company, La Salle and Chicago, Illinois. 
Minkowski, H. (1909). Physikalische Zeitschrift, 10, 104. 
Uhlenbeck, G. E. and Goudsmit, S. A. (1925). Physica, 5, 261. 
Uhlenbeck, G. E. and Goudsmit, S. A. (1926). Nature (London), 117, 264. 


